3.1.33 \(\int \frac {A+B x+C x^2}{(a+b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=368 \[ \frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (\frac {A \left (b^2-12 a c\right )+4 a b C}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (-\frac {-12 a A c+4 a b C+A b^2}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {2 B c \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.87, antiderivative size = 368, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {1673, 1178, 1166, 205, 12, 1107, 614, 618, 206} \begin {gather*} \frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (\frac {A \left (b^2-12 a c\right )+4 a b C}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (-\frac {-12 a A c+4 a b C+A b^2}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {2 B c \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-(B*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (x*(A*b^2 - 2*a*A*c - a*b*C + c*(A*b - 2*a*C)*x^2))
/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[c]*(A*b - 2*a*C + (A*(b^2 - 12*a*c) + 4*a*b*C)/Sqrt[b^2 - 4*a
*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4
*a*c]]) + (Sqrt[c]*(A*b - 2*a*C - (A*b^2 - 12*a*A*c + 4*a*b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/S
qrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*B*c*ArcTanh[(b + 2*c
*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx &=\int \frac {B x}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac {A+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx\\ &=\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+B \int \frac {x}{\left (a+b x^2+c x^4\right )^2} \, dx-\frac {\int \frac {-A b^2+6 a A c-a b C-c (A b-2 a C) x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}\\ &=\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} B \operatorname {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )+\frac {\left (c \left (A \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right )+2 a \left (2 b-\sqrt {b^2-4 a c}\right ) C\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )^{3/2}}+\frac {\left (c \left (A b-2 a C-\frac {A b^2-12 a A c+4 a b C}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}\\ &=-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (A \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right )+2 a \left (2 b-\sqrt {b^2-4 a c}\right ) C\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (A b-2 a C-\frac {A b^2-12 a A c+4 a b C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(B c) \operatorname {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{b^2-4 a c}\\ &=-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (A \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right )+2 a \left (2 b-\sqrt {b^2-4 a c}\right ) C\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (A b-2 a C-\frac {A b^2-12 a A c+4 a b C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 B c) \operatorname {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c}\\ &=-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (A \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right )+2 a \left (2 b-\sqrt {b^2-4 a c}\right ) C\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (A b-2 a C-\frac {A b^2-12 a A c+4 a b C}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 B c \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.22, size = 393, normalized size = 1.07 \begin {gather*} \frac {1}{4} \left (\frac {4 a c x (A+x (B+C x))+2 a b (B+C x)-2 A b x \left (b+c x^2\right )}{a \left (4 a c-b^2\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (A \left (b \sqrt {b^2-4 a c}-12 a c+b^2\right )-2 a C \left (\sqrt {b^2-4 a c}-2 b\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \left (A \left (-b \sqrt {b^2-4 a c}-12 a c+b^2\right )+2 a C \left (\sqrt {b^2-4 a c}+2 b\right )\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {4 B c \log \left (\sqrt {b^2-4 a c}-b-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {4 B c \log \left (\sqrt {b^2-4 a c}+b+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((2*a*b*(B + C*x) - 2*A*b*x*(b + c*x^2) + 4*a*c*x*(A + x*(B + C*x)))/(a*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) +
(Sqrt[2]*Sqrt[c]*(A*(b^2 - 12*a*c + b*Sqrt[b^2 - 4*a*c]) - 2*a*(-2*b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*S
qrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]
*(A*(b^2 - 12*a*c - b*Sqrt[b^2 - 4*a*c]) + 2*a*(2*b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
+ Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (4*B*c*Log[-b + Sqrt[b^2 - 4*a*c]
 - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*B*c*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/4

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

IntegrateAlgebraic[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2, x]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [B]  time = 7.85, size = 5158, normalized size = 14.02

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

-1/2*(2*C*a*c*x^3 - A*b*c*x^3 + 2*B*a*c*x^2 + C*a*b*x - A*b^2*x + 2*A*a*c*x + B*a*b)/((c*x^4 + b*x^2 + a)*(a*b
^2 - 4*a^2*c)) + 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3
+ 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s
qrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*
b*c^2)*(a*b^2 - 4*a^2*c)^2*A - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*
a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^2 - 2*
(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*C + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqr
t(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c - 2*a*b^6*c + 64*sq
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + s
qrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)
*a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a
^2*b^2*c^3 - 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 192*a^4*c^4 + 2*(b^2 - 4*a
*c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*c^2 + 48*(b^2 - 4*a*c)*a^3*c^3)*A*abs(a*b^2 - 4*a^2*c) + 2*(sqrt(2)*sqr
t(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c - 2*sqrt(2)*sqrt(b*
c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^2 + 8*sq
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + 16*a
^3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*a^4*b*c^3 + 2*(b^2 - 4*a*c)*a^2*b^3*c -
8*(b^2 - 4*a*c)*a^3*b*c^2)*C*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384*a^
5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^6*c
 - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5*
c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*
b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^5*c^2
 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*A + 4*(2*a^3*b^6*c^2 - 16*a^4*b^4*c^3 + 32*a^5*b
^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(
b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c -
 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2
+ 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4*a*c)*a^3*b^4*c^2 + 8*(b
^2 - 4*a*c)*a^4*b^2*c^3)*C)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2
*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48*a^
5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^2 -
 4*a^2*c)*abs(c)) - 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b
^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
- sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*
c)*b*c^2)*(a*b^2 - 4*a^2*c)^2*A - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 -
 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*
a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^2 -
 2*(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*C - 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*a*b^6*c + 64
*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2
+ sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c
)*a^2*b^2*c^3 + 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 - 192*a^4*c^4 - 2*(b^2 -
4*a*c)*a*b^4*c + 20*(b^2 - 4*a*c)*a^2*b^2*c^2 - 48*(b^2 - 4*a*c)*a^3*c^3)*A*abs(a*b^2 - 4*a^2*c) - 2*(sqrt(2)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c - 2*sqrt(2)*sqrt
(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c + 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^2 + 8
*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 - 1
6*a^3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 + 32*a^4*b*c^3 - 2*(b^2 - 4*a*c)*a^2*b^3*c
 + 8*(b^2 - 4*a*c)*a^3*b*c^2)*C*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384
*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^
6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b
^5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a*c
)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a
^3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^5*
c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*A + 4*(2*a^3*b^6*c^2 - 16*a^4*b^4*c^3 + 32*a^
5*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^5*
c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c
^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4*a*c)*a^3*b^4*c^2 + 8
*(b^2 - 4*a*c)*a^4*b^2*c^3)*C)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(
a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48
*a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^
2 - 4*a^2*c)*abs(c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqr
t(b^2 - 4*a*c))*B*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c
^4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*B)*log
(x^2 + 1/2*(a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*
b^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*
abs(a*b^2 - 4*a^2*c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 - (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sq
rt(b^2 - 4*a*c))*B*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*
c^4 + a*b^3*c^4 - 4*a^2*b*c^5 - (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*B)*lo
g(x^2 + 1/2*(a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a
*b^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2
*abs(a*b^2 - 4*a^2*c))

________________________________________________________________________________________

maple [B]  time = 0.15, size = 1813, normalized size = 4.93

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x)

[Out]

-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*B*b^2-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2
)^(1/2)/c)*B*b^2-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)*x*C*b^2+2*c/(4*a*c-b^2)^2/(x^2+1/2*b
/c-1/2*(-4*a*c+b^2)^(1/2)/c)*B*a-c/(4*a*c-b^2)^2*B*(-4*a*c+b^2)^(1/2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))+2*c/(4
*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)*B*a+c/(4*a*c-b^2)^2*B*(-4*a*c+b^2)^(1/2)*ln(2*c*x^2+b+(-4*a
*c+b^2)^(1/2))+3*c^2/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1
/2))*c)^(1/2)*c*x)*A*(-4*a*c+b^2)^(1/2)-c^2/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1
/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*b+2*c^2/(4*a*c-b^2)^2*a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*a
rctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C-1/4*c/(4*a*c-b^2)^2/a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*b^3-c/(4*a*c-b^2)^2*2^(1/2)/((-b+(-4*a*c+b^2)
^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C*(-4*a*c+b^2)^(1/2)*b+1/4*c/(4*a*c-b^
2)^2/a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*b^3-c/(
4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C*(
-4*a*c+b^2)^(1/2)*b+1/4/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)/a*x*A*b^3+1/4/(4*a*c-b^2)^2/(x^2+
1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)/a*x*A*b^3-c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*x*A*(-4*a*c
+b^2)^(1/2)-c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*A*b*x+2*c/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-
4*a*c+b^2)^(1/2)/c)*a*C*x+c/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)*x*A*(-4*a*c+b^2)^(1/2)-c/(4*a
*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)*A*b*x+2*c/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c
)*a*C*x-1/2/(4*a*c-b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*x*C*b^2-1/4*c/(4*a*c-b^2)^2/a*2^(1/2)/((-b+(-
4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*(-4*a*c+b^2)^(1/2)*b^2-1/4
*c/(4*a*c-b^2)^2/a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*
x)*A*(-4*a*c+b^2)^(1/2)*b^2-1/2*c/(4*a*c-b^2)^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-
4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C*b^2+3*c^2/(4*a*c-b^2)^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^
(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*(-4*a*c+b^2)^(1/2)+c^2/(4*a*c-b^2)^2*2^(1/2)/((-b+(-4*a*c+b^2)^
(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*A*b-2*c^2/(4*a*c-b^2)^2*a*2^(1/2)/((-b+
(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C+1/2*c/(4*a*c-b^2)^2*2^(1
/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*C*b^2+1/4/(4*a*c-
b^2)^2/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)/a*x*A*(-4*a*c+b^2)^(1/2)*b^2-1/4/(4*a*c-b^2)^2/(x^2+1/2*b/c+1/2*
(-4*a*c+b^2)^(1/2)/c)/a*x*A*(-4*a*c+b^2)^(1/2)*b^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2 \, B a c x^{2} + {\left (2 \, C a - A b\right )} c x^{3} + B a b + {\left (C a b - A b^{2} + 2 \, A a c\right )} x}{2 \, {\left ({\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} x^{4} + a^{2} b^{2} - 4 \, a^{3} c + {\left (a b^{3} - 4 \, a^{2} b c\right )} x^{2}\right )}} + \frac {-\int \frac {4 \, B a c x + {\left (2 \, C a - A b\right )} c x^{2} - C a b - A b^{2} + 6 \, A a c}{c x^{4} + b x^{2} + a}\,{d x}}{2 \, {\left (a b^{2} - 4 \, a^{2} c\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

-1/2*(2*B*a*c*x^2 + (2*C*a - A*b)*c*x^3 + B*a*b + (C*a*b - A*b^2 + 2*A*a*c)*x)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^
2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2) + 1/2*integrate(-(4*B*a*c*x + (2*C*a - A*b)*c*x^2 - C*a*b - A*b^2 +
 6*A*a*c)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)

________________________________________________________________________________________

mupad [B]  time = 1.67, size = 4707, normalized size = 12.79

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x)

[Out]

((B*b)/(2*(4*a*c - b^2)) + (x*(2*A*a*c - A*b^2 + C*a*b))/(2*a*(4*a*c - b^2)) + (B*c*x^2)/(4*a*c - b^2) - (c*x^
3*(A*b - 2*C*a))/(2*a*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) + symsum(log((5*A^3*b^3*c^4 + 8*C^3*a^3*c^4 + 6*C^3*
a^2*b^2*c^3 - 36*A^3*a*b*c^5 - 96*A*B^2*a^2*c^5 + 72*A^2*C*a^2*c^5 - 3*A^2*C*b^4*c^3 + 16*A*B^2*a*b^2*c^4 + 3*
A*C^2*a*b^3*c^3 - 60*A*C^2*a^2*b*c^4 + 18*A^2*C*a*b^2*c^4 + 16*B^2*C*a^2*b*c^4)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*
a^3*b^4*c + 48*a^4*b^2*c^2)) - root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4
- 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*A*C*a^2*b^8*c*z^2
 + 24576*A*C*a^5*b^2*c^4*z^2 - 3072*A*C*a^3*b^6*c^2*z^2 + 2048*A*C*a^4*b^4*c^3*z^2 - 32*A*C*a*b^10*z^2 + 12288
*C^2*a^6*b*c^4*z^2 + 61440*A^2*a^5*b*c^5*z^2 + 432*A^2*a*b^9*c*z^2 - 49152*A*C*a^6*c^5*z^2 - 8192*C^2*a^5*b^3*
c^3*z^2 + 1536*C^2*a^4*b^5*c^2*z^2 + 24576*B^2*a^5*b^2*c^4*z^2 - 6144*B^2*a^4*b^4*c^3*z^2 + 512*B^2*a^3*b^6*c^
2*z^2 - 61440*A^2*a^4*b^3*c^4*z^2 + 24064*A^2*a^3*b^5*c^3*z^2 - 4608*A^2*a^2*b^7*c^2*z^2 - 32768*B^2*a^6*c^5*z
^2 - 16*C^2*a^2*b^9*z^2 - 16*A^2*b^11*z^2 + 3072*A*B*C*a^3*b^3*c^3*z - 768*A*B*C*a^2*b^5*c^2*z - 4096*A*B*C*a^
4*b*c^4*z + 64*A*B*C*a*b^7*c*z + 32*B*C^2*a^2*b^6*c*z - 672*A^2*B*a*b^6*c^2*z + 1536*B*C^2*a^4*b^2*c^3*z - 384
*B*C^2*a^3*b^4*c^2*z - 15872*A^2*B*a^3*b^2*c^4*z + 4992*A^2*B*a^2*b^4*c^3*z + 32*A^2*B*b^8*c*z - 2048*B*C^2*a^
5*c^4*z + 18432*A^2*B*a^4*c^5*z + 192*A*B^2*C*a^2*b^2*c^3 - 32*A*B^2*C*a*b^4*c^2 - 16*B^2*C^2*a^2*b^3*c^2 - 96
0*A^2*C^2*a^2*b^2*c^3 - 18*A*C^3*a*b^5*c - 192*B^2*C^2*a^3*b*c^3 + 198*A^2*C^2*a*b^4*c^2 + 144*A*C^3*a^2*b^3*c
^2 - 960*A^2*B^2*a^2*b*c^4 + 240*A^2*B^2*a*b^3*c^3 + 2016*A^3*C*a^2*b*c^4 - 496*A^3*C*a*b^3*c^3 + 224*A*C^3*a^
3*b*c^3 + 768*A*B^2*C*a^3*c^4 - 9*C^4*a^2*b^4*c + 360*A^4*a*b^2*c^4 + 30*A^3*C*b^5*c^2 - 9*A^2*C^2*b^6*c - 24*
C^4*a^3*b^2*c^2 - 288*A^2*C^2*a^3*c^4 - 16*A^2*B^2*b^5*c^2 - 16*C^4*a^4*c^3 - 256*B^4*a^3*c^4 - 25*A^4*b^4*c^3
 - 1296*A^4*a^2*c^5, z, k)*(root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 6
1440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*A*C*a^2*b^8*c*z^2 +
24576*A*C*a^5*b^2*c^4*z^2 - 3072*A*C*a^3*b^6*c^2*z^2 + 2048*A*C*a^4*b^4*c^3*z^2 - 32*A*C*a*b^10*z^2 + 12288*C^
2*a^6*b*c^4*z^2 + 61440*A^2*a^5*b*c^5*z^2 + 432*A^2*a*b^9*c*z^2 - 49152*A*C*a^6*c^5*z^2 - 8192*C^2*a^5*b^3*c^3
*z^2 + 1536*C^2*a^4*b^5*c^2*z^2 + 24576*B^2*a^5*b^2*c^4*z^2 - 6144*B^2*a^4*b^4*c^3*z^2 + 512*B^2*a^3*b^6*c^2*z
^2 - 61440*A^2*a^4*b^3*c^4*z^2 + 24064*A^2*a^3*b^5*c^3*z^2 - 4608*A^2*a^2*b^7*c^2*z^2 - 32768*B^2*a^6*c^5*z^2
- 16*C^2*a^2*b^9*z^2 - 16*A^2*b^11*z^2 + 3072*A*B*C*a^3*b^3*c^3*z - 768*A*B*C*a^2*b^5*c^2*z - 4096*A*B*C*a^4*b
*c^4*z + 64*A*B*C*a*b^7*c*z + 32*B*C^2*a^2*b^6*c*z - 672*A^2*B*a*b^6*c^2*z + 1536*B*C^2*a^4*b^2*c^3*z - 384*B*
C^2*a^3*b^4*c^2*z - 15872*A^2*B*a^3*b^2*c^4*z + 4992*A^2*B*a^2*b^4*c^3*z + 32*A^2*B*b^8*c*z - 2048*B*C^2*a^5*c
^4*z + 18432*A^2*B*a^4*c^5*z + 192*A*B^2*C*a^2*b^2*c^3 - 32*A*B^2*C*a*b^4*c^2 - 16*B^2*C^2*a^2*b^3*c^2 - 960*A
^2*C^2*a^2*b^2*c^3 - 18*A*C^3*a*b^5*c - 192*B^2*C^2*a^3*b*c^3 + 198*A^2*C^2*a*b^4*c^2 + 144*A*C^3*a^2*b^3*c^2
- 960*A^2*B^2*a^2*b*c^4 + 240*A^2*B^2*a*b^3*c^3 + 2016*A^3*C*a^2*b*c^4 - 496*A^3*C*a*b^3*c^3 + 224*A*C^3*a^3*b
*c^3 + 768*A*B^2*C*a^3*c^4 - 9*C^4*a^2*b^4*c + 360*A^4*a*b^2*c^4 + 30*A^3*C*b^5*c^2 - 9*A^2*C^2*b^6*c - 24*C^4
*a^3*b^2*c^2 - 288*A^2*C^2*a^3*c^4 - 16*A^2*B^2*b^5*c^2 - 16*C^4*a^4*c^3 - 256*B^4*a^3*c^4 - 25*A^4*b^4*c^3 -
1296*A^4*a^2*c^5, z, k)*((x*(1024*B*a^5*c^6 - 16*B*a^2*b^6*c^3 + 192*B*a^3*b^4*c^4 - 768*B*a^4*b^2*c^5))/(2*(a
^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - (6144*A*a^5*c^6 + 16*A*a*b^8*c^2 - 1024*C*a^5*b*c^5 -
288*A*a^2*b^6*c^3 + 1920*A*a^3*b^4*c^4 - 5632*A*a^4*b^2*c^5 + 16*C*a^2*b^7*c^2 - 192*C*a^3*b^5*c^3 + 768*C*a^4
*b^3*c^4)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (root(1572864*a^8*b^2*c^5*z^4 - 983040*
a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 -
 256*a^3*b^12*z^4 + 576*A*C*a^2*b^8*c*z^2 + 24576*A*C*a^5*b^2*c^4*z^2 - 3072*A*C*a^3*b^6*c^2*z^2 + 2048*A*C*a^
4*b^4*c^3*z^2 - 32*A*C*a*b^10*z^2 + 12288*C^2*a^6*b*c^4*z^2 + 61440*A^2*a^5*b*c^5*z^2 + 432*A^2*a*b^9*c*z^2 -
49152*A*C*a^6*c^5*z^2 - 8192*C^2*a^5*b^3*c^3*z^2 + 1536*C^2*a^4*b^5*c^2*z^2 + 24576*B^2*a^5*b^2*c^4*z^2 - 6144
*B^2*a^4*b^4*c^3*z^2 + 512*B^2*a^3*b^6*c^2*z^2 - 61440*A^2*a^4*b^3*c^4*z^2 + 24064*A^2*a^3*b^5*c^3*z^2 - 4608*
A^2*a^2*b^7*c^2*z^2 - 32768*B^2*a^6*c^5*z^2 - 16*C^2*a^2*b^9*z^2 - 16*A^2*b^11*z^2 + 3072*A*B*C*a^3*b^3*c^3*z
- 768*A*B*C*a^2*b^5*c^2*z - 4096*A*B*C*a^4*b*c^4*z + 64*A*B*C*a*b^7*c*z + 32*B*C^2*a^2*b^6*c*z - 672*A^2*B*a*b
^6*c^2*z + 1536*B*C^2*a^4*b^2*c^3*z - 384*B*C^2*a^3*b^4*c^2*z - 15872*A^2*B*a^3*b^2*c^4*z + 4992*A^2*B*a^2*b^4
*c^3*z + 32*A^2*B*b^8*c*z - 2048*B*C^2*a^5*c^4*z + 18432*A^2*B*a^4*c^5*z + 192*A*B^2*C*a^2*b^2*c^3 - 32*A*B^2*
C*a*b^4*c^2 - 16*B^2*C^2*a^2*b^3*c^2 - 960*A^2*C^2*a^2*b^2*c^3 - 18*A*C^3*a*b^5*c - 192*B^2*C^2*a^3*b*c^3 + 19
8*A^2*C^2*a*b^4*c^2 + 144*A*C^3*a^2*b^3*c^2 - 960*A^2*B^2*a^2*b*c^4 + 240*A^2*B^2*a*b^3*c^3 + 2016*A^3*C*a^2*b
*c^4 - 496*A^3*C*a*b^3*c^3 + 224*A*C^3*a^3*b*c^3 + 768*A*B^2*C*a^3*c^4 - 9*C^4*a^2*b^4*c + 360*A^4*a*b^2*c^4 +
 30*A^3*C*b^5*c^2 - 9*A^2*C^2*b^6*c - 24*C^4*a^3*b^2*c^2 - 288*A^2*C^2*a^3*c^4 - 16*A^2*B^2*b^5*c^2 - 16*C^4*a
^4*c^3 - 256*B^4*a^3*c^4 - 25*A^4*b^4*c^3 - 1296*A^4*a^2*c^5, z, k)*x*(4096*a^6*b*c^6 + 16*a^2*b^9*c^2 - 256*a
^3*b^7*c^3 + 1536*a^4*b^5*c^4 - 4096*a^5*b^3*c^5))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)))
 + (32*B*C*a^2*b^4*c^3 - 384*A*B*a^2*b^3*c^4 - 512*B*C*a^4*c^5 + 32*A*B*a*b^5*c^3 + 1024*A*B*a^3*b*c^5)/(8*(a^
2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (x*(A^2*b^6*c^3 - 288*A^2*a^3*c^6 + 32*C^2*a^4*c^5 + 12
8*A^2*a^2*b^2*c^5 - 16*B^2*a^2*b^3*c^4 + 10*C^2*a^2*b^4*c^3 - 48*C^2*a^3*b^2*c^4 - 18*A^2*a*b^4*c^4 + 64*B^2*a
^3*b*c^5 - 48*A*C*a^2*b^3*c^4 + 2*A*C*a*b^5*c^3 + 160*A*C*a^3*b*c^5))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c
+ 48*a^4*b^2*c^2))) - (x*(16*B^3*a^2*c^5 - A^2*B*b^3*c^4 + 8*B*C^2*a^2*b*c^4 - 24*A*B*C*a^2*c^5 + 12*A^2*B*a*b
*c^5 - 2*A*B*C*a*b^2*c^4))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)))*root(1572864*a^8*b^2*c^
5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 104857
6*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*A*C*a^2*b^8*c*z^2 + 24576*A*C*a^5*b^2*c^4*z^2 - 3072*A*C*a^3*b^6*c^2*z^
2 + 2048*A*C*a^4*b^4*c^3*z^2 - 32*A*C*a*b^10*z^2 + 12288*C^2*a^6*b*c^4*z^2 + 61440*A^2*a^5*b*c^5*z^2 + 432*A^2
*a*b^9*c*z^2 - 49152*A*C*a^6*c^5*z^2 - 8192*C^2*a^5*b^3*c^3*z^2 + 1536*C^2*a^4*b^5*c^2*z^2 + 24576*B^2*a^5*b^2
*c^4*z^2 - 6144*B^2*a^4*b^4*c^3*z^2 + 512*B^2*a^3*b^6*c^2*z^2 - 61440*A^2*a^4*b^3*c^4*z^2 + 24064*A^2*a^3*b^5*
c^3*z^2 - 4608*A^2*a^2*b^7*c^2*z^2 - 32768*B^2*a^6*c^5*z^2 - 16*C^2*a^2*b^9*z^2 - 16*A^2*b^11*z^2 + 3072*A*B*C
*a^3*b^3*c^3*z - 768*A*B*C*a^2*b^5*c^2*z - 4096*A*B*C*a^4*b*c^4*z + 64*A*B*C*a*b^7*c*z + 32*B*C^2*a^2*b^6*c*z
- 672*A^2*B*a*b^6*c^2*z + 1536*B*C^2*a^4*b^2*c^3*z - 384*B*C^2*a^3*b^4*c^2*z - 15872*A^2*B*a^3*b^2*c^4*z + 499
2*A^2*B*a^2*b^4*c^3*z + 32*A^2*B*b^8*c*z - 2048*B*C^2*a^5*c^4*z + 18432*A^2*B*a^4*c^5*z + 192*A*B^2*C*a^2*b^2*
c^3 - 32*A*B^2*C*a*b^4*c^2 - 16*B^2*C^2*a^2*b^3*c^2 - 960*A^2*C^2*a^2*b^2*c^3 - 18*A*C^3*a*b^5*c - 192*B^2*C^2
*a^3*b*c^3 + 198*A^2*C^2*a*b^4*c^2 + 144*A*C^3*a^2*b^3*c^2 - 960*A^2*B^2*a^2*b*c^4 + 240*A^2*B^2*a*b^3*c^3 + 2
016*A^3*C*a^2*b*c^4 - 496*A^3*C*a*b^3*c^3 + 224*A*C^3*a^3*b*c^3 + 768*A*B^2*C*a^3*c^4 - 9*C^4*a^2*b^4*c + 360*
A^4*a*b^2*c^4 + 30*A^3*C*b^5*c^2 - 9*A^2*C^2*b^6*c - 24*C^4*a^3*b^2*c^2 - 288*A^2*C^2*a^3*c^4 - 16*A^2*B^2*b^5
*c^2 - 16*C^4*a^4*c^3 - 256*B^4*a^3*c^4 - 25*A^4*b^4*c^3 - 1296*A^4*a^2*c^5, z, k), k, 1, 4)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x**2+B*x+A)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________